SEPA-1 Mediates the Specific Recognition and Degradation of P Granule Components by Autophagy in C. elegans

نویسندگان

  • Yuxia Zhang
  • Libo Yan
  • Zhi Zhou
  • Peiguo Yang
  • E. Tian
  • Kai Zhang
  • Yu Zhao
  • Zhipeng Li
  • Bing Song
  • Jinghua Han
  • Long Miao
  • Hong Zhang
چکیده

How autophagy, an evolutionarily conserved intracellular catabolic system for bulk degradation, selectively degrades protein aggregates is poorly understood. Here, we show that several maternally derived germ P granule components are selectively eliminated by autophagy in somatic cells during C. elegans embryogenesis. The activity of sepa-1 is required for the degradation of these P granule components and for their accumulation into aggregates, termed PGL granules, in autophagy mutants. SEPA-1 forms protein aggregates and is also a preferential target of autophagy. SEPA-1 directly binds to the P granule component PGL-3 and also to the autophagy protein LGG-1/Atg8. SEPA-1 aggregates consistently colocalize with PGL granules and with LGG-1 puncta. Thus, SEPA-1 functions as a bridging molecule in mediating the specific recognition and degradation of P granule components by autophagy. Our study reveals a mechanism for preferential degradation of protein aggregates by autophagy and emphasizes the physiological significance of selective autophagy during animal development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Selective autophagic degradation of maternally-loaded germline P granule components in somatic cells during C. elegans embryogenesis.

Germline P granules are specialized protein/RNA aggregates that are found exclusively in germ cells in C. elegans. During the early embryonic divisions that generate germ blastomeres, aggregate-prone P granule components PGL-1 and PGL-3 that remain in the cytoplasm destined for somatic daughters are selectively removed by autophagy. Loss-of-function of components of the autophagy pathway, inclu...

متن کامل

Role of autophagy in Caenorhabditis elegans.

Autophagy is an evolutionarily conserved intracellular catabolic system. During Caenorhabditis elegans development, autophagy plays an important role in many physiological processes, including survival under starvation conditions, modulation of life span, and regulation of necrotic cell death caused by toxic ion-channel variants. Recently, it has been demonstrated that during embryogenesis, bas...

متن کامل

Guidelines for monitoring autophagy in Caenorhabditis elegans

The cellular recycling process of autophagy has been extensively characterized with standard assays in yeast and mammalian cell lines. In multicellular organisms, numerous external and internal factors differentially affect autophagy activity in specific cell types throughout the stages of organismal ontogeny, adding complexity to the analysis of autophagy in these metazoans. Here we summarize ...

متن کامل

Detection of Autophagy in Caenorhabditis elegans.

Autophagy is a dynamic and catabolic process that results in the breakdown and recycling of cellular components through the autophagosomal-lysosomal pathway. Many autophagy genes identified in yeasts and mammals have orthologs in the nematode Caenorhabditis elegans. In recent years, gene inactivation by RNA interference (RNAi) and chromosomal mutations has been useful to probe the functions of ...

متن کامل

Autophagy genes coordinate with the class II PI/PtdIns 3-kinase PIKI-1 to regulate apoptotic cell clearance in C. elegans.

Phagocytosis and autophagy are two lysosome-mediated cellular degradation pathways designed to eliminate extracellular and intracellular constituents, respectively. Recent studies suggest that these two processes intersect. Several autophagy proteins have been shown to participate in clearance of apoptotic cells, but whether and how the autophagy pathway is involved is unclear. Here we showed t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cell

دوره 136  شماره 

صفحات  -

تاریخ انتشار 2009